NASA’s Perseverance rover which is positioned in the Jezero Crater on Mars, recently observed a remarkable celestial event as the moon Phobos drifted across the Sun. Captured on September 30, this moment offered a rare glimpse into Mars’ sky, where the unique “googly eye” effect of the eclipse unfolded for the rover’s Mastcam-Z camera. The video, released by NASA, illustrates the interplay of Martian moon orbits and provides valuable information on Phobos’ trajectory and its gradual shift towards Mars.

Unexpected Eclipse Creates ‘Googly Eye’ View on Mars

Perseverance, which has been observing Mars’ surface and sky since 2021, recorded the silhouette of Phobos moving rapidly across the Sun’s face from Mars’ western Jezero Crater. Phobos, the larger of Mars’ two moons, created a distinct “googly eye” visual effect as it partially blocked sunlight, a phenomenon not typically visible from Earth. The eclipse, captured on the mission’s 1,285th sol (Martian day), highlights Phobos’ swift orbit, which takes just 7.6 hours to complete a full circle around Mars. Due to its close orbit, Phobos regularly crosses Mars’ sky, allowing for these brief transits which last only about 30 seconds each.

Phobos’ Eerie Path and Future on Mars

Phobos, named by astronomer Asaph Hall in 1877 after the Greek deity associated with fear, measures about 27 kilometres at its widest. Unlike Earth’s larger moon, Phobos appears far smaller in the Martian sky. Its orbit brings it closer to Mars with time, which scientists predict will eventually cause Phobos to collide with the Martian surface within the next 50 million years. Past eclipses of Phobos, also recorded by other Mars rovers like Curiosity and Opportunity, continue to contribute essential data for understanding Mars’ moons and their shifting orbits.

Perseverance’s Mission and Future Mars Exploration

As part of NASA’s Mars 2020 mission, Perseverance focuses on exploring Martian geology and astrobiology. The mission, managed by NASA’s Jet Propulsion Laboratory (JPL), is the first to collect samples of Mars’ surface material, which are intended to be retrieved in future joint missions with the European Space Agency (ESA). Perseverance’s Mastcam-Z, developed with support from Arizona State University, Malin Space Science Systems, and the Niels Bohr Institute, plays a crucial role in gathering high-resolution imagery to support geological studies. This mission aligns with NASA’s broader objective of preparing for human exploration on Mars, beginning with the Artemis missions to the Moon.